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Abstract. We consider variational problems in which the slope of the admissible curves is not
necessarily bounded, so that they admit discontinuous solutions. A problem is first reformulated as
one consisting of the minimization of an integral in a space of functions satisfying a set of integral
equalities; this is then transfered to a nonstandard framework, in which Loeb measures take the place
of the functions and a near-minimizer can always be found. This is mapped back to the standard
world by means of the standard part map; its image is a minimizer, so that the optimization is global.
The minimizer is shown to be the solution of an infinite dimensional linear program and by well-
proven approximation procedures a finite dimensional linear program is found by means of which
nearly-optimal curves can be constructed for the original problem. A numerical example is given.
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1. Introduction

We have developed in many publications (see Rubio, 1986, 1994 and the ref-
erences there) an approach to the study to the global optimization of nonlinear
optimal control problems based on the consideration of measure spaces and related
mathematical structures; this approach was suggested by the work of Young (1969)
on the calculus of variations. In most of our previous work, all underlying sets —
control sets being a special case — were taken to be compact.

In this paper we consider a simple variational problem whose control set —
the set in which the slopes of the admissible curves take values — is noncompact,
unbounded; we have already extended our results to such a case — in a different
manner — some years ago (Rubio, 1976). These problems have interest because
they include as possible minimizing curves those exhibiting discontinuities; per-
haps the first thorough semiclassical treatment of such problems was by Lawden
(1959); one could also mention Krotov (1961). Nowadays optimal control prob-
lems exhibiting ‘impulses’ in their control law have been much studied, see Vinter
and Pereira (1988), Bressan and Rampazzo (1993) as well as their references; see
also our own treatment in Rubio (1994, Chapter 6).
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226 J. E. RUBIO

Our general philosophy is somewhat different from the one prevailing in most
of those references, including our own work (Rubio, 1994). It is always necessary
in circumstances such as those found in this paper to introduce idealized elements,
to complete — in a very general sense — the natural spaces arising in connection
with the optimization problems. So far, it has appeared natural to enlarge the spaces
to include ‘delta functions’, impulses; there are many ways of doing this, such as
embedding the spaces into spaces of distributions, using nonstandard versions of
this same construction, and so on. Alas, it is very difficult to work with impulses;
in particular, it is very hard to define functions of impulses; see Rubio (1994,
Chapter 6), for a discussion of this point. In this paper, our idealized elements lack
the familiarity of impulses and such; they are nonstandard elements, not easily
visualized but easily handled mathematically.

Thus, our path is as follows. The variational problem will be written in a
manner involving the solution of a set of integral equalities; these are mapped then
into a nonstandard framework, in which the use of Loeb measures gives rise to
an important result, that a near-minimizer for the standard optimization problem
always exists. The standard part map provided us with a global minimizer for the
original problem, as well as with a measure-theoretical framework in the standard
world in which a linear program is obtained with the minimizer as a solution.

Approximation tools developed in our previous work (Rubio, 1986) are then
used to develop a finite dimensional approximation of the linear program, and
construct nearly-optimal solutions of the variational problem. A numerical example
is given.

2. The problem

Let x; z be vectors in Euclidean n-space Rn , t a real variable, J := [ta; tb] with
ta < tb, A a compact subset of Rn , xa; xb points in A. Consider the class F of
infinitely differentiable functions t! x(t); t 2 J such that

x(t) 2 A; t 2 J; x(ta) = xa; x(tb) = xb:

Note that there are no constraints on the slope _x of these admissible curves.
We assume that this class F is nonempty, and seek to minimize the functional
I : F ! R

I(x(�)) =

Z tb

ta

f0(t; x(t); _x(t)) dt; (1)

for x(�) 2 F . Here (t; x; z)! f0(t; x; z) is a continuous function defined on


 := J �A� R
n

Of course, in general there will not be a minimizer for the functional I in F—
this class, of infinitely differentiable functions, is not large enough. The question
that arises now is, what can we enlarge this class to, while keeping the functional
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THE GLOBAL OPTIMIZATION OF VARIATIONAL PROBLEMS 227

I well defined in the new class? The problem seems to be that there are cases
in which the infimum occurs at a function which has discontinuities, see Lawden
(1959) and Rubio (1976); what can then be the meaning of the derivative _x, and
of the integral in the definition (1) of I? These are questions that will be answered
by the constructions to be introduced in this paper; for the moment, we take this
definition of the class F as a starting point, a temporary device.

We develop nows some equalities that are satisfied by the admissible curves,
and which will serve as the key tool for our nonstandard treatment. Let B be an
open ball in R

n+1 containing J � A; we denote by C 0(B) the space of all real-
valued functions on B that are uniformly continuous on B together with their first
derivatives. Let � 2 C 0(B); define

�̂(t; x; z) := �x(t; x)z + �t(t; x) (2)

for all (t; x; z) 2 
. Of course, �̂ 2 C(
). If x(�) is an admissible curve,
Z
J
�̂(t; x(t); _x(t)) dt =

Z
J
[�x(t; x(t)) _x(t) + �t(t; x(t))] dt

=

Z
J

_�(t; x(t)) dt = �(tb; xb)� �(ta; xa) := ��;

(3)

for all � 2 C 0(B). There are two special cases which are of interest; in the first we
put  (t; x) := xj (t), with 1 � j � n, and  a test function on the interior J� of
the interval J ; that is,  2 D(J�); see Rubio (1986). Then, putting

 j(t; x; z) := xj 
0(t) + zj (t); (4)

for 1 � j � n and  2 D(J�), the equality (3) becomes
Z
J
 j(t; x(t); _x(t)) dt = 0; (5)

since the test functions in D(J�) are zero at the boundary of J .
The second case of interest happens when the function � is chosen as a differ-

entiable function of the time t only,

 (t; x; z) := �(t); (t; x; z) 2 
; (6)

then  ̂(t; x; u) = _�(t), (t; x; z) 2 
. We introduce a subspace of C(
), to be
denoted by C1(
), consisting of those functions which depend only on the first
variable t; then the equalities (3) become:

Z
J
h(t; x(t); _x(t)) dt = ah; h 2 C1(
); (7)

with ah the Lebesgue integral of h(�; x; z) over J , independent of x and z.
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228 J. E. RUBIO

As explained in detail in some of our previous publications (Rubio, 1976, 1986),
we will choose for each of these spaces countable sets of functions whose linear
combinations are dense in the corresponding spaces in appropriate topologies.

For the spaceC 0(
)we shall choose f�ig; a set of polynomials in (t; x1; . . . ; xn);
for D(J�); f�jg, the sequence of functions of the type (4) when the functions  
are the sine and cosine functions

sin(2�r(t� ta)=�t)); 1� cos(2�r(t� ta)=�t)); r = 1; 2; . . .

and j = 1; . . . ; n, and for C1(
) the sequence fhkg, a set of monomials in t

(but watch how we use in Section 5 pulse-like, lower semicontinuous functions
instead). Further, we shall consider a finite number of the resulting infinite number
of equalities, as in

Z
J
�̂i(t; x(t); _x(t)) dt = ��i; i = 1; . . . ;M1;Z

J
�j(t; x(t); _x(t)) dt = 0; j = 1; . . . ;M2;Z

J
hk(t; x(t); _x(t)) dt = ahk ; k = 1; . . . ;M3; (8)

and study the properties of the curves satisfying them. Then we shall take limits,
as M1;M2;M3 !1:

3. The nonstandard way

We shall change our framework here — in a manner that appears minor. Let R be
the extended real line. Instead of assuming that the slopes of the curves in F take
values in R

n , we shall take Rn as a place of abode for these values. There will
be no apparent change — the curves do take values in R

n and Rn � R
n. But, as

we shall see below, the introduction of R is fundamental to out development. We
consider therefore the problem of minimizing the functional

I(x(�)) :=
Z
J
f0(t; x(t); _x(t)) dt (9)

of the class FM of C1 functions valued in Rn satisfying
Z
J
fi(t; x(t); _x(t)) dt = bi; i = 1; . . . ;M; (10)

and taking values in A � R
n . Here f0; fi; i = 1; . . . ;M; are in C(
0), with


0 := J �A� R
n
:

We shall write sometimes w := (t; x; z) 2 
0. The integer M � 1 is fixed, and so
are the constant bi; i = 1; . . . ;M . We assume that the class FM is nonempty. We
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THE GLOBAL OPTIMIZATION OF VARIATIONAL PROBLEMS 229

shall develop in this section a procedure to enlarge the set FM , while at the same
time extending the functional (9) to the whole of the new, larger set of admissible
elements. This procedure will be based on nonstandard techniques.

The reason why this is so involves the fact that the slope of the curves in FM is
not necessarily bounded, and it may happen, for some integrands, that a minimizer
for the functional I exhibits jump-type discontinuities (Lawden, 1959), at which
points the slope _x could be said to be infinite. Thus, we have to be able to handle
infinity — or, actually, infinities, a task for which nonstandard analysis is well
suited.

In our quest for infinities, we shall start with the extended real line R. This will
be part of our starting nonstandard construction, while also playing a major role
when we return to the standard world. We will review briefly some of its properties;
see Berge (1963), Monroe (1953) and Choquet (1969).
� The extended real line R is obtained by adding to the real line R two elements,
1 and�1, so that R := R[f1;�1g. These two elements satisfy a number
of well-known postulates, such as
– For every x 2 R, �1 < x <1. This makes the extended real line into an

ordered set.
– The extended system will not be a field, but we can connect the new elements

with the field operations by postulating that for every real numberxwe have:
x=�1 = 0; (�1)(�1) =1; 1+1+ x =1;

etc.
� It is possible to put a topology on R so that it is a compact space. Such a

topology is generated by the following sets:
– The open sets in R.
– The union of f1g with an open set of R containing an interval of the form
(�;1).

– The union of f�1gwith an open set of R containing an interval of the form
(�1; �).

We proceed now with our nonstandard construction. For general treatments of
this topic, see Cutland (1988) and Rubio (1994). We will work in a nonstandard
framework given by a superstructure V (W ), R �W . The superstructure V (�V ) is
also an enlargement, and @1-saturated. We study integrals of the form (9,10), that
is, Z

J
f(t; x(t); _x(t)) dt; (11)

with x(�) 2 FM and f 2 C(
0). Then,

(8x(�) 2 FM )

�Z
J
f(t; x(t); _x(t)) dt 2 R

�
; (12)

by transfer,

(8x(�) 2� FM )

�
�

Z
�J

�f(t; x(t); _x(t)) dt 2 �
R

�
; (13)
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230 J. E. RUBIO

where here and below we write _x(�) for (� d
dtx(�)). Thus, the nonstandard version

of the optimization problem (9,10) consists in minimizing

�I(x(�)) :=�

Z
�J

�f0(t; x(t); _x(t)) dt (14)

on the class �FM of functions x(�) 2 �C1n(
0), x(t) 2 �A; t 2 �J , satisfying

�

Z
�J

�fi(t; x(t); _x(t)) dt = bi; i = 1; . . . ;M: (15)

Consider now the map suggested by (12). If x(�) 2 FM is fixed, the map

�x(�) : F !

Z
J
F (t; x(t); _x(t)) dt 2 R; F 2 C(
0) (16)

is linear and positive. By Riesz’ Theorem, there is a measure, to be denoted also
by �x(�), on the Borel sets B of 
0, that represents this map; remember that 
0 is
compact. Then (�
0;� B;� �x(�)) is a nonstandard measure space and then (Render,
1993),

LEMMA 1. There is a measure space (�
0;A; �
x(�)
L ) so that �x(�)L is the Loeb

measure associated with �x(�); then,

�

Z
�J
F (t; x(t); _x(t)) dt = �

x(�)
L (F ) :=

Z
�
0

Fd�
x(�)
L ; F 2 C(�
0): (17)

The algebraA is an extension of the algebra �B.
Proof. Follows directly from the reference given above. �

Thus, one can write the optimization problem (14, 15) as the problem of minimizing

J(�
x(�)
L ) := �

x(�)
L (f0); (18)

over the set ML
M of measures of the form �

x(�)
L defined by

�
x(�)
L (fi) = bi; i = 1; . . . ;M: (19)

The following two propositions show that the solution of our problem is a global
optimizer.

PROPOSITION 1. (i) The infima associated with the problems (9�10), (14�15)
and (18� 19) are equal.

(ii) For any positive infinitesimal s 2 �
R, we can find a near-minimizer �s 2

ML
M for the functional J in (18) in the setML

M , so that

J(�s) = inf
ML

M

J + s: (20)
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Proof. It follows from Theorem 3.8 in Rubio (1994). �

Let, then, s be a fixed positive infinitesimal in �
R, and �s the corresponding near-

minimzer for J onML
M . We can proceed to map back this measure to the standard

world, by means of the standard part map, see Henson (1979), Aldaz (1992),
Render (1993) and Landers and Rogge (1987).

PROPOSITION 2. There is a Baire measure �opt on 
0 so that:
(i) If S is a Baire set in 
0,

�opt(S) =
��s(st�1


0 (S));

where st�1

0 (S) is the union of the monads of the elements of S.

(ii)

�opt(f0) :=
Z

0

f0d�opt = inf
FM

Z
J
f0(t; x(t); _x(t)) dt:

(iii) The measure �opt is a solution of the following optimization problem.
Minimize

�(f0) (21)

over the set M+

M (
0) of positive Baire measures on 
0 satisfying

�(fi) = bi; i = 1; . . . ;M: (22)

(iv) The support of �opt contains subsets of 
0 in which at least one component
of the variable z 2 R

n is either�1 or1. The measure �opt is defined by a Baire
measure on J �A� R

n plus atomic measures on those subsets.
Proof. (i) See Henson (1979). (ii), (iii). These statements follow from Proposi-

tion 1 and the fact that for all f 2 C(
0)Z

0

fd�opt =
Z
�
0

�(�f)d�s =
�

Z
�
0

�fd�s;

note that by continuity
�(�f(w)) = f(st
0(w)) = f(yw); w 2 
;0

where yw is the (unique) element of 
0 so that w is in the monad of y.
(iv) We consider now the support of �opt. For simplicity in the notation, assume

n = 1, and consider a point (t; x;1) 2 S, S being a Baire set in 
0. Then

st�1

0 (t; x;1) =M �

\
�

�(�;1] =M � �f1g;

with M the monad of (t; x). Then, for f 2 C(
0), for some hyperreal �, there will
be a contribution to the integralZ

�
0

�(�f)d�s
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232 J. E. RUBIO

of

�[< �if(t; x;1) >] = (��)f(t; x;1);

which proves our contention; the cases including the element �1 and multidi-
mensional vectors can be treated similarly. �

In problems of interest, in which the function f0 tends to infinity at infinity, and in
which the infimum is finite, elements (t; x; z) 2 
0 with one or more components
of value1 or�1 do not really occur in the support of �opt; note that expressions
such as 1�1 are not defined for the extended real line. Thus,

PROPOSITION 3. Suppose that

jf0(t; x; z)j =1

whenever a component of z is either 1 or �1, and that the minimum associated
with the linear program (21)–(22) is finite. Then such elements are not present in
the support of �opt.

We are now in a strong position to solve our original problem — the optimization
problem (9) and (10) in the standard world. Note that we have been able to construct
an extension of the original space FM , made up of elements which are not curves;
however, the action of �opt — a global optimizer — can be approximated by
members of FM .

4. Approximation

We consider the optimization problem (21)–(22). By means of a result of Rosen-
bloom (1952), and since 
0 is compact, we can state that the minimizer �opt for
this problem has the form

�opt =
MX
`=1

�`�(w`); �` � 0; w` 2 
0; ` = 1; . . . ;M; (23)

where �(w) is the atomic measure with support fwg 2 
0. It is appropriate now to
write the system (21)–(22) in full, as in (8). We wish to minimize

MX
`=1

�`f0(w`); (24)

on the set defined by the elements

�` � 0; w` 2 
0; ` = 1; . . . ;M;
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which satisfy, further,

MX
`=1

�`�̂i(t`; x`; z`) = ��i; i = 1; . . . ;M1;

MX
`=1

�`�j(t`; x`; z`) = 0; j = 1; . . . ;M2;

MX
`=1

�`hk(t`; x`; z`) = ahk ; k = 1; . . . ;M3; (25)

with M :=M1 +M2 +M3.
A further concept must be introduced now; see Rubio (1986). Note that we

have in (24)–(25) a nonlinear optimization problem, in which the unknowns are
the coefficients �` and supportsw`; ` = 1; . . . ;M: In order to find a linear approx-
imation to this problem, we consider !, a countable dense subset of 
0. Taking
N � M elements from !, including all elements of the form introduced in (iv)
above in which at least one component of z 2 R

n is either�1 or1, we can write
(24)–(25) as follows. We wish to minimize

NX
`=1

�`f0(w`); (26)

on the set defined by the elements �` � 0; ` = 1; . . . ;M; which satisfy, further,

NX
`=1

�`�̂i(t`; x`; z`) = ��i; i = 1; . . . ;M1;

NX
`=1

�`�j(t`; x`; z`) = 0; j = 1; . . . ;M2;

NX
`=1

�`hk(t`; x`; z`) = ahk ; k = 1; . . . ;M3; (27)

with M := M1 + M2 + M3. Here, then, the supports w` are fixed, in !; the
coefficients �`; ` = 1; . . . ;M , are the only unknowns; this is an M � N (finite
dimensional) linear program. Of course as N ! 1 the support of the optimal
measure �opt in (24)–(25) can be approximated closer and closer by that of �Nopt,
the solution of (26)–(27). Note, further, that at most M of the unknown �’s are
nonzero; we shall assume that the problem has essential regularity, and that exactly
M of these �’s are nonzero; see Rubio (1986, Chapters 3 and 4), for a discussion
of this point.

Since no element z` in the support of �Nopt has components equal to either�1
or1, the approximation process has been studied in detail in Rubio (1986), and a
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234 J. E. RUBIO

curve in FM can be constructed approximating the action of �opt on f0. �1 or
1. It is necessary to modify the set ! into a set

!Q := ! \ [�Q;Q];

in which the coordinates of the z direction takes values in a portion of the dense
set ! defined by a number Q; if Q is large enough, all the elements in the support
of �opt will be approximated adequately. Then,

PROPOSITION 4. Suppose that the minimum in the linear program (26)–(27) is
finite, that the conditions of Proposition 3 are satisfied, and that the function f0 is
Lipschitz, that is, that there is a constant k so that

jf0(t
0; x0; z0)� f0(t; x; z)j � k(jt0 � tj+ kx0 � xk+ kz0 � zk)

for all (t0; x0; z0); (t; z; x) in 
. Then it is possible to construct a curve x(�)NQ in
FM so that:

(i) As Q!1,
Z
J
f0(t; x

N
Q (t); _x

N
Q (t)) dt! �Nopt(f0):

(ii) As N !1,

�Nopt(f0)! �opt(f0):

Proof. (i)Let �NQ be the solution of the linear programming problem (26)–(27)
with ! modified into !Q as explained above. Then,
1. The time set J = [ta; tb] has been divided into M3 equal subdivisions Jk; k =

1; . . . ;M3, each of measure �t=M3, with �t := tb � ta.
2. There is a total ofM indices ` associated with those values�` that are nonzero.

To each of the subdivision Jk of J defined above are associated a number of
these indices; if only one is so associated, then the value of �` equals �t=M3;
if more than one are associated, then the sum of the corresponding �`’s adds
up to �t=M3.

3. Without loss of generality, let Jk, for 1 � k � M3 be associated with two
�`’s, �`1 and �`2 , as explained above, a typical situation; then we build the
curve x(�)NQ on Jk by, first, building the derivative curve _x(�)NQ by making

_x(t)QN ; t 2 Jk, equal to z`1 or z`2 in each of the two partitions of Jk with
lengths �`1 and �`2 respectively. After building the whole of the curve _x(�)NQ
on J , this curve can be integrated using the initial conditions and thus obtain
x(�)NQ , which satisfies exactly the final condition, as explained above.

4. We shall also build a further curve, �x(�)NQ , constructed from the results of the
linear program so that �xNQ (t) = x` on the corresponding subdivision of Jk.
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5. Assume that �q is associated with the subdivision Jp and, for simplicity and
without loss of generality, that q is the only index associated with this subdi-
vision, so that �q = �t=M3: Then the construction and approximation proce-
dures indicated above takes place with no difficulty. Here we are comparing

�qf0(tq; xq; zq)

with Z
Jp

f0(t; x
N
Q (t); _x

N
Q (t)) dt;

the mth component of zq is 1, while the mth component of _xNQ (t) equals Q
on Jp. Thus:������qf0(tq; xq; zq)�

Z
Jp

f0(t; x
N
Q (t); _x

N
Q (t)) dt

����� (28)

�

������qf0(tq; xq; zq)�

Z
Jp

f0(t; �x
N
Q (t); _x

N
Q (t)) dt

����� (29)

+

�����
Z
Jp

f0(t; �x
N
Q (t); _x

N
Q (t)) dt�

Z
Jp

f0(t; x
N
Q (t); _x

N
Q (t)) dt:

����� (30)

By the mean value theoremZ
Jp

f0(t; �x
N
Q (t); _x

N
Q (t)) dt = �qf0(t̂; xq; ẑq);

where t̂ 2 Jp and ẑq equals zq if Q is sufficiently large. Thus, the quantity in
(29) is not higher than

�q(k(t̂� tq) +RQ) � �q(�qk +RQ);

where RQ is zero if Q is sufficiently large. Thus the quantity associated with
(29) tends to zero as M3 tends to infinity, provided Q is large enough. The
quantity associated with (30) has been treated in Rubio (1986, Chapter 4).

(ii) As in Rubio (1986, Chapters 3 and 4). �

It is interesting to realize that in some problems such as the one to be treated
numerically below, the support of �opt gets wider as M ! 1, so that larger and
larger values of Q are necessary; in this way, solution curves with steep portions
are obtained.

5. An example and discussion

We have solved a simple problem, taken from Lawden (1959), with n = 1 and

f0(t; x; z) := (z3 � 1)1=3;

the other parameters are ta = 0; tb = 1, xa = 0; xb = 2. The numerical approxi-
mation was performed with the following parameters:

Q = 24;M1 = 2;M2 = 8;M3 = 30;M = 40; N = 27000:
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236 J. E. RUBIO

Figure 1. Graph of the slope _x(�) of the nearly-optimal curve x(�).

Figure 2. Graph of the nearly-optimal curve x(�).

The functions hk has been chosen as pulse-like functions in t defined as follows.
The t-axis is divided into M3 subintervals, and the function hk equals 1 in the kth
subdivision, 0 elsewhere, the values given at the boundaries so that these functions
are lower semicontinuous. The theory can be adapted very well to such choice, see
Rubio (1986, Chapter 5).

Each of the axis associated with the variables (t; x; z) was divided into 30 parts;
the minimum obtained was 0:49587, which should be compared with the minimum
for the problem obtained by semiclassical means in Lawden (1959) of 0:413. The
approximation problems for this kind of optimization problems are fierce; it is
necessary to have a large value of Q as well as very fine mesh, thus very large
linear programs. The graphs of the derivative _x(�) and the curve x(�) can be seen
above.

We should note that — even in this simply problem — we have achieved
something not easily accomplished by the more traditional methods, which would
have found it extremely hard to deal with the cube of a ‘delta function’; they mostly
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deal in problems in which the slope variable — our z — or the control variable
appear linearly.

The method employed here should generalize without much difficulty to more
general optimal control problems with unbounded control sets. Also, it appears
promising to deal with partial differential equations with solutions exhibiting
shocks, such as those studied in Oberguggenberger (1992).
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